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A numerical prediction method has been developed for local scour
on a sand bed due to turbulent flows on the basis of the arbitrary
Lagrangian-Eulerian formulation, in which three-dimensional
body-fitted coordinates are properly generated for the sand bed
profile unsteadily deformed by the flows. The curvilinear coordi-
nates are generated with reasonable accuracy by means of cubic
spline interpolations. The equations for momentum, turbulent quan-
tities, and sand concentration are discretized in a Lagrangian
scheme so as to preserve second-order accuracy with respect to
time and space. The convection of the variables are evaluated with
third-order accuracy, taking account of the velocity of the grid point
caused by ALE formulation. On the other hand, the sand bed profiles
are predicted with the continuity equation for sand by evaluating
the total flux consisting of the bed and suspended loads caused
by the tractive and convective forces of the turbulent flows. This
prediction method is applied to the results of a three-dimensional
local scour experiment. From the comparison with the experimental
results, it is verified that the sand bed profiles are satisfactorily
predicted and that the predicted results are largely improved com-
pared with those based on the Eulerian coordinate system. © 1996
Academic Press, Inc.

1. INTRODUCTION

Local scour on a sand bed caused by the tractive force
of a turbulent flow is considered as one of the practical
moving boundary problems. Since in this problem a turbu-
lent flow must be numerically predicted within the three-
dimensional computational volume which is unsteadily de-
formed by the tractive force of the flow itself, it is essential
for the numerical prediction to take account of the inter-
action between a flow field and sand bed deformation.

Some numerical methods were certainly proposed in
the past to estimate the local scour due to turbulent flows
[1, 2]. However, many of the usual methods employed
considerable simplification, such as quasi-three-dimen-
sional models, empirically derived diffusivities, or hydro-
static vertical pressure distributions. Although Olsen and
Melaaen [3] recently adopted three-dimensional curvilin-
ear coordinate system, it cannot be applied to unsteady
problems. In our previous work [4], on the other hand,

while local scour and three-dimensional turbulent flows
were unsteadily predicted, there was still some room for
improvement owing that the coordinate system is based
on Eulerian formulation.

The arbitrary Lagrangian—Eulerian (ALE) method, ini-
tially proposed by Hirt [5], has been developed to solve
wide-ranging moving boundary problems up to the present,
since it is advantageous compared with the Eulerian or
Lagrangian coordinate system [6]. In the present numerical
prediction method, three-dimensional non-orthogonal cur-
vilinear coordinates are generated so that the coordinate
lines are coincident with the deformed sand bed surface
on the basis of the ALE formulation. Since cubic spline
interpolations are utilized in the present grid generation
[7], the numerical representation of the arbitrarily de-
formed boundary shapes and the evaluation of metric coef-
ficients are more accurate than usual methods [8].

The governing equations for fluid dynamics, including
transport equations for turbelence energy, its dissipation
rate and suspended loads, are discretized in a Lagrangian
scheme [7], so that they can preserve second-order accu-
racy with respect to time and space. In addition, taking
account of the velocity of the grid point, the convection
terms in the governing equations are solved with third-
order accuracy [9]. Cubic spline interpolations are also
made use of to improve the numerical accuracy; the inter-
polation of physical values in the staggered grid arrange-
ment and the evaluation of derivatives in diffusion terms
are all achieved with the spline functions. On the other
hand, the sand bed profiles are predicted with the continu-
ity equation for sand by evaluating the total flux consisting
of the bed load and suspended load caused by the tractive
and convective forces of a turbulent flow.

This prediction method is applied to the results of a
three-dimensional local scour experiment. From the com-
parison with the experimental results, it is verified that the
sand bed profiles are satisfactorily predicted by the present
method and that the predicted results are largely improved
compared with our previous work [4] which was based on
the Eulerian coordinate system.
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FIG. 1. A unit computational volume in the transformed space (@,
scalar value; W, U;; A, U,; ¢, Us).

2. NUMERICAL PROCEDURE

2.1. Grid Generation

Let (¢, x1, X2, x3) and (1, &, &, &) be the time and three-
dimensional spatial coordinates in physical and computa-
tional (or transformed) spaces, respectively. On the basis
of the ALE formulation, the non-orthogonal curvilinear
coordinate system (&, &, &) is regenerated for the arbi-
trarily moving boundaries independently of the fluid mo-
tion. The present curvilinear coordinates can be obtained
with the following equation which is derived from Poisson

equations [§],
)

(reae) (5%) Ge)
8§p8§q 8x, 8)(]-

where p # g and r = s and all subscripts take 1 to 3. The
Einstein summation rule is applied to the terms bearing
the same subscripts twice in this paper. The control func-
tions P,, are given as exponential forms, which adjust the
grid intervals in the physical space [8]. In Eq. (1), the
derivatives with asterisks are evaluated not by the usual
central difference but from general cubic spline interpola-
tion (GCSI) as proposed by Ushijima [7]. As a result, the
metric coefficients are evaluated with higher accuracy than
usual method [8].

A unit computational volume in the transformed space
consists of 27 grid points, as shown in Fig. 1. All of their
locations in the physical space are determined by solving
Eq. (1). The scalar variables are placed at the center grid
in the unit volume, while each contravariant velocity com-
ponent is defined at the center grid on the surface normal

to its direction. In contrast to such staggered arrangement
inside the computational domain, the grid distributions are
varied near the boundaries and the physical quantities are
defined just on the transformed boundary surfaces so that
Dirichlet boundary conditions can be implemented exactly.
When a certain physical value at a grid point needs to be
evaluated at another grid located in different position, it
is interpolated with GCSI in the computational domain
rather than simple linear interpolation.

2.2. Equation of Motion

The time 7 in computational space can be set equal to
that of physical space, since there is no need to transform
this component in the present problem. Regarding the
differentiation of §,, with respect to ¢, in particular, the rela-
tionship

9&m _

8x,~ Cim _ Cim _
o or gy Moy, U @

is established, where U,,, corresponds to the contravariant
component of the grid velocity u,,. In Eq. (2), C;, is the
cofactor and Ji is the determinant of the Jacobian in the
Eulerian coordinates defined by

Con = adj [?—ﬂ (3a)
Ty = det [aaif] (3b)

Accordingly, in the ALE formulation, the velocity of the
grid point must be taken into account in the Lagrangian
differentiation in the computational space as
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FIG. 2. Schematic view of the experimental flume unit (mm).
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where U,, is a contravariant component of fluid velocity
u; defined by

— oy, Yo
U, =u, o, 5)

The equations of motion are given as the three-dimen-
sional Reynolds equations which correspond to ensemble-
averaged Navier—Stokes equations. When a two-equation
turbulence model is employed, the Reynolds equations
may be described using the Boussinesq concept with eddy-
diffusivity to close the equation system,

Du; _ 1 dp 3¢, Pui 9€n0&, L
i 2P %moy ot Pu
Dt p &y 0x; (v + &n) [agmafn axdx; " 0
u@(a_ﬁ 3_£> ©)
8§m Bx,- afn axj agn a-xi
3 ok 0&
— 22X %m_ _pG,+D
20, ox; o

where the Lagrange-differential operator on the left-hand
side is given by Eq. (4). On the right-hand side of Eq.
(6), PG; and D; represent pressure gradient and diffusion
terms, respectively. Here u;, p, v, and g,, are average veloc-
ity in the x; direction, fluid density, kinematic viscosity,
and eddy-diffusivity, respectively. The pressure p corre-
sponds to the deviation from that of the hydrostatic condi-
tion. In a k — ¢ turbulence model, the turbulent diffusivity
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FIG. 3. Generated grid points in the initial stage.
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FIG. 4. Outline of the whole numerical procedure.

is given by the following form with turbulence energy &
and its dissipation rate &:

k2
Ey = Ck;

™)

The momentum equation given by Eq. (6) is discretized
in a Lagrangian scheme so as to have second-order accu-
racy with respect to time and space. The following discreti-
zation was applied to a flow field in a curved pipe and it
was demonstrated that the secondary flow patterns, as well
as the development of the axial velocity distributions, were
successfully predicted [7]:

-1 D;’"‘} A @®)

2

Wt = —PGI* A+ ul” + F Dj" -3

The superscripts n stand for the computational time-step
number and At is the time increment in the calculation.
The superscripts “prime”” and ““double prime’” denote the
spatial locations at P'(&[, &, &) and P"(&7, &5, €5), which
correspond to earlier upstream positions specified by

f:n = gm - (U:ln - U6lm) At (93)

;/n = fm - (U’rin - U’(}m) Ar— (U}’vyil - Uéqunil) At. (9b)

The physical values located at P’ and P are evaluated
with a third-order upwind difference [9]. In addition, the
derivatives included in the diffusion terms are calculated
with GCSL

The calculation of pressure is substantially the same as
done by Ushijima [7].

2.3. Transport Equation for Turbulent Quantities

In a computational space, the transport equations for
turbulence energy and its dissipation rate may be written as

Dk (aui &, | du a@) ou; I&,,
- = SM - + - = _
Dt 9&, dx;  9&, dx;) &, Ox;
o 9’k 0&,08, ok
+lv+= +P,—
(” C, 8M> [afmagn o, g, | (10
Cuon 06, ok 6 _
C,, afm (:)x]‘ afn 6x,»
and
De € <3Mi 0§ | 0u; 08\ du; 9&,
Dr Uk M\ag, ax;, | 0&, ox,) 98, ox;
Cs 628 a'gmagn de
+lv+= + P, —
(” CV8M> [afmafn oo, mag,| (D
C, dep 0&, de 0, 2
_ﬂia_s_f_ ngs = FE.

Applying the discretization procedure used to derive Eq.
(8), the following results are obtained:

L §F m— lFI(""il At (12)
2 2
il — in 3 m 1 mn—1
"t =g+ (JFE" = SFE™ | Ar. (13)

In the above equations, all terms included in FK and FE
are evaluated with GCSI and the physical values located
at P’ and P" are evaluated with a third-order scheme in a
manner similar to the momentum equations. The con-
stants, C;, C,, C,, and C,, used in the present turbulence
model follow the general values proposed by Rodi [10].
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Here v, B, and Q,, stand for the porosity of sand, the height

3. PREDICTION OF SAND BED PROFILE

3.1. Continuity Equation for Sand

&, direction,

While a sand bed is unsteadily deformed by the tractive
force generated by a turbulent flow, the continuity equa-

of the sand bed, and the total sand flux in

respectively. The total sand flux is assumed here to be the
sum of the bed load Qp,, and suspended load Qg,,

tion for the transported sand is always satisfied. This conti-

nuity equation is utilized to calculate the height of the bed.

The transformed continuity equation is written as

(15)

g;?l3rn + g;?linﬂ'

g?in =
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FIG. 6. Distribution of the generated grids (¢ — & plane, ¢ = 30 min).

3.2. Estimation of Bed Load g5 Tiee Usee
— = 12732 (1 - 0.85—) (1 - 092 (17)
The flux of the bed load Qp,, is calculated from that in (sgd) T Uz
the physical space gp; as
with
I&m
m — P . 16
Os qs ox, (16) .
s=—-—1 (18a)
To evaluate ¢gp;, some empirical and quasi-theoretical mod- P
els may be available. Recently Asida et al. [11] proposed s = Ui (18b)

the relationship
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(19)

D
— | +85.
k5> 8.5

ol

where g, o, and d are gravity, density, and diameter of [ere k, D, and ks are the Karman constant, the vertical

sand, respectively. The critical shear stress 7«. and critical

1
K

ul
Ui

(18c)

sand bed,

distance from the

and the equivalent

friction velocity us, for sand movement depend on the
physical property of sand and fluid viscosity, which can be

roughness, respectively.

evaluated from the formulation proposed by Iwagaki [12].

3.3. Estimation of Suspended Load

included in Eq. (17) is obtained

from the general logarithmic law on the hydraulically rough

The friction velocity us;
wall [13], which is given by

The transport equation for the concentration of the sus-
pended sediment needs to be solved to estimate Qy,,. The
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transport equation can be written in the computational where C is the average sand concentration. In Eq. (20),

space as the Boussinesq concept is utilized for the turbulent flux
of sand concentration. Here A and &g correspond to the
D*C P2C  9ELE, aC molecular and the turbulent diffusivities, respectively. The
Dr (A + &) [W EYr m g} Lagrangian differentiation appearing on the left-hand side
s " (20) s defined by
E)IEJY d é511 aC é)§§;1 D* _ d ” d
9E, ox; &, 9x;° Di a7 T (Ui~ Uon) Y @1
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FIG. 9.

The boundary condition for the sand concentration
should be regulated on the bed surface, since the suspended

with

load is generated from the bottom boundary. This bound-
ary condition is given by the model proposed by Lane and
Kalinske [14] in the present calculation. The suspended

I&m (22)

Bx,-

m

= (u; — wods))

load Qg, is estimated by integrating in & direction the
product of C and the corresponding velocity components.

It is noted that the sedimentation velocity of sand wy is

taken into account in Eq. (22).
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FIG. 10. Contour maps for scoured bed profiles (numbers for lines x; (cm); £ = 30 min).

4. APPLICATION OF THE PREDICTION METHOD

4.1. Conditions for Calculation

The derived numerical prediction method is applied
to the three-dimensional local scour experiment which
is detailed by Ushijima et al [4]. In this experiment,
three jet flows are independently discharged from sub-
merged outlets 133.5 mm in diameter with a flow rate of
4.66 X 107> m?¥/s in a flat flume 9.0 m in length, 13.0 m in
width, and 0.5 m in depth. Nearly uniform sand (density
2.59 g/cm?® and diameter 0.21 mm) is smoothly spread in
the flume with a gradient of approximately 1/200. During
the experiment, the sand bed is unsteadily deformed by
the tractive force of the discharged jet flows and the bed
profile is measured 30 min after the start of the discharge,
while the bed deformation has not yet reached equilibrium
state at this time.

Figure 2 shows the schematic view of the experimental
flume and Cartesian coordinates. The calculation area is
set up 6.0 m in x; direction and 1.0 m in x, direction,
assuming the symmetry. Particularly, the shapes of the
outlet cross sections and the initial gradient of the bed are
exactly treated by means of the curvilinear coordinates.
Figure 3 shows the generated curvilinear coordinates at
the initial stage.

On the surface, including the center line, symmetrical
boundary conditions are applied to the scalar variables
and velocity components parallel to it. Free boundary con-
ditions are used on the downstream and side boundaries.
On the other hand, wall functions for the hydraulically
rough boundaries are adopted on the sand bed and up-
stream surfaces. The free surface is treated as a rigid
boundary with no friction, since the free surface level is

nearly constant during the experiment. The total grid num-
beris & X & X & = 89 X 35 X 25 = 77,875 and the
number of the grids where scalar variables are defined is
45 X 18 X 13 = 10,530. This grid number is referred by the
indices i, j, and k in &, &, and &; directions, respectively.

The outline of the whole numerical procedure is shown
in Fig. 4. After the initial boundary shapes and initial flow
conditions are given, three-dimensional body-fitted curvi-
linear coordinates are first generated. Then the numerical
predictions for turbulent flow, including the calculation of
Eq. (20), and for sand bed profiles proceed in Loop-F and
Loop-B as shown in Fig. 4, respectively. In case that the
time scales for the flow field and the sand bed deformation
are of the same order, computational time increments for
Loop-F and Loop-B (Afr and Atg, respectively) can be set
equal and iteration numbers (kr and kg, respectively) may
be set unity in both calculations. In this condition, unsteady
numerical predictions for fluid and sand bed shapes are
simultaneously proceeded and grid generation is per-
formed in every computational step. However, in the pres-
ent case under consideration, the ratio of the time scales
for fluid motion to that for sand bed deformation may be
of the order 1075, Accordingly it can certainly be assumed
that the fluid calculation proceeds in Loop-F with a given
quasi-static boundary shapes during the deformation is
negligible and that the prediction of sand bed profile is
performed under a quasi-steady flow patterns in Loop-B
as long as the bed deformation does not bring about any
effects on the flow field. Taking account of these different
time scales, the computational conditions are set at Atg =
0.0025 s, Atg = 10.0 s, kg = 2000, and kg = 45. This
condition allows us to get rid of a lot of unnecessary compu-
tational time.
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4.2. Comparison with Experimental Results

The predicted velocity vectors on & —§& planes are shown
in Fig. 5. The jet flows discharged from different nozzles
merge into one primary flow as indicated on Fig. Sc.
Near the bottom surface, as shown in Fig. 5a, the effect
of the main flow appears at x; = 0.5 m for the first time
and the peak velocity arises not on the center line, but at
X, = 0.25 m in the downstream region.

Figure 6 shows the generated curvilinear coordinates on
&—& planes, in which vertical length scale is magnified by
2.0 times compared with horizontal one. The broken lines
in Fig. 6 represent the initial sand bed profile with a gradi-
ent of 1/200. As shown in these results, three-dimensional
body-fitted coordinates are satisfactorily generated for the

It
it
It
u

The velocity vectors predicted by the previous model [4].

deformed sand bed. The deeply scoured area appears at
around & = 1.8 m on j = 10 plane as shown in Fig. 6c.
Figure 7 shows the predicted velocity vectors on the same
&—§& planes. The jet flows tend to go toward the bottom
surface, probably due to the Coanda effect, which may
urge the local scour on the sand bed.

The generated grid distributions on the &-§& planes
which are vertical to the jet flow axis are shown in Fig. 8.
The depression on sand bed is located about 0.25 m apart
from the center surface as shown in i = 18 to 34 planes in
Fig. 8. The secondary flow patterns on the &—§; planes are
presented in Fig. 9. On the upstream section, as shown in
i = 2 plane, it can be seen that the entrained secondary
flow from the free side boundary forms the slight accumula-
tion of sand near the center region.

@ 0 6.0 m
| |
1.0m
0.5 o1
L WSS .
(b) 0 6.0m
| |
1.0m
1 0

FIG. 12. Nondimensional sand flux (interval of the lines 0.1). (a) Prediction by the previous model [4]; and (b) prediction by the present model.
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The predicted sand bed profiles are compared with ex-
perimental results in Fig. 10. Figure 10a shows the compari-
son with the previous numerical results [4], which was
obtained with Eulerian grid treatment rather than the pres-
ent ALE formulation. While the location of the deepest
point was near the center line in the previous prediction
as shown in Fig. 10a, the location of the sand depression
is more precisely predicted in the present numerical result
shown in Fig. 10b.

Figure 11 shows the velocity vectors on horizontal sur-
face at x; = 0, which was obtained in the Eulerian grid
formulation. From the comparison with the corresponding
result shown in Fig. 5a, it can be seen that the peak velocity
appears near the center line in the previous result. Thus
the scoured area and the buildup region may occur near
the center line in this case as shown in Fig. 10a. On the
other hand, in the present result, the maximum velocity
arises apart from the center line.

The total sand fluxes, the summation of the bed load
and suspended load, are calculated differently between
two results as shown in Fig. 12. The total sand fluxes in Fig.
12 are normalized by the maximum values, respectively. In
contrast to the previous result, the present numerical
model predicts maximum flux apart from the center line,
which agrees with the velocity distributions near the bot-
tom surface. It can be concluded that the present sand
flux distribution, which mainly results from the accurate
prediction for the flow field with curvilinear coordinates,
improves the predicted sand bed profiles.

5. CONCLUDING REMARKS

A numerical prediction method for local scour has been
developed in the present study on the basis of the arbitrary
Lagrangian—Eulerian formulation, in which three-dimen-
sional body-fitted coordinates are properly generated for
the sand bed profiles unsteadily deformed by the turbulent
flows. The curvilinear coordinates are generated with rea-
sonable accuracy by means of cubic spline interpolations.

The equations for momentum, turbulent quantities, and
sand concentration are discretized in a Lagrangian scheme
so as to preserve second-order accuracy with respect to
time and space. The convection of the variables are evalu-
ated with third-order accuracy and the velocity of the grid
point caused by the ALE formulation is taken into account.
On the other hand, the sand bed profiles are predicted
with the continuity equation for sand by evaluating the
total flux consisting of the bed and suspended loads caused
by the tractive and convective forces of the turbulent flows.
The developed numerical method was applied to a local
scour experiment and the predicted sand bed profiles were
compared with the measured results. As a result, it is
proved that the present numerical method enables us to
predict the scoured sand bed profiles satisfactorily.
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